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Variable Step Size Predictor-Corrector Schemes 
for Second Kind Volterra Integral Equations 

By H. M. Jones* and S. McKee 

Abstract. In this paper a family of implicit multistep methods for the solution of Volterra 
integral equations is derived. These methods together with an explicit Euler predictor permit 
the use of a variable step size when solving integral equations. Means of controlling the error 
and stability by varying the step size and the order of the method are described. Extensive 
numerical results are presented. 

1. Introduction. There are many different numerical methods for solving the 
second kind Volterra integral equation 

(1.1) y(t) + f K(t, s, y(s)) ds = g(t). 
0 

For instance, a selection can be found in Delves and Walsh [3] or Baker [1]. As with 
ordinary differential equations explicit linear multistep methods for integral equa- 
tions tend to be less numerically stable than implicit ones, a point noted by the 
authors in a previous paper (Jones and McKee [6]). The main disadvantage of using 
implicit linear multistep methods is that it is necessary to solve a nonlinear equation 
at each grid point. Predictor-corrector methods have the merit of being essentially 
explicit, whilst retaining stability properties somewhere between those of the compo- 
nent explicit and implicit methods. 

The purpose of this paper is to derive and develop a family of predictor-corrector 
methods for solving Volterra integral equations of the second kind. These methods 
may have variable step size and each member of the family a different order of 
accuracy. A divided difference notation is used. This allows a higher-order method 
to be calculated from that of a lower-order by the addition of appropriate dif- 
ferences. The coefficients of the divided differences are calculated from recurrence 
relations. Each method consists of the sum of two different types of quadrature rule, 
each of which approximate 

(1.2) | +1 
K(tk, s, y(s)) ds 

to the required order. To minimize the number of starting values required, a forward 
quadrature rule based on the points 

{ ti, ti+i, * *kti+l } 
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is employed to approximate (1.2) for small i. This is used to integrate up to some 
point ti, which is decided by stability considerations. Then a backward rule based on 
the points 

{ t O+ ... * *Zti+l--I 

is employed. These rules are derived in a divided difference formulation which 
allows complete freedom in the choice of step size within a given range. The order of 
the rule used to integrate between ti and tj+j is permitted to vary with i and k. We 
use these methods to obtain a solution to the integral equation to within a 
user-specified tolerance. This requires the use of an error estimate which is given in 
Section 4. The techniques for changing the order and step size are also described in 
this section. 

A package based on the methods of this paper was used to solve some 20 test 
equations (see Williams [14]), 15 of which are given here. The user is required to 
supply only the problem and the tolerance; then the program automatically changes 
step size and method in a manner similar to that used by Shampine and Gordon [9]. 
The package is written in ANSI (1966) FORTRAN and can be found in Jones [5] or 
Williams [14]. 

2. Preliminaries. The Volterra integral equation of the second kind 

(2.1) y(t) + f K(t, s, y(s)) ds = g(t) t e [0, T], 
0 

is assumed to satisfy the conditions for a unique solution (see, for example, Tricomi 
[11] or Smithies [10]). The grid and explicit and implicit methods are now defined in 
general terms; in subsequent sections particular values of the coefficients are 
derived. The interval [0, T] is divided into N subintervals. The grid is not defined a 
priori and so N is not known initially. The grid points are chosen to satisfy 

0 = to < t <t2< ... < tN-1 < tN =T 

with tk - tk-l = hk = Ykh, where 0 < Y* < Yk < 1. Thus, each step size hk E 

[hmin, h], where hmin = y*h. At each point tk (2.1) becomes 

(2.2) y(tk) + E t' l K(tk, S, y(s)) ds = g(tk), 0 < k < N, 
1=0 t, 

with y(to) = yo = g(to). Each integral ftt+ K(tk, s, y(s)) ds in (2.2) can be ap- 
proximated by 

tL+ 

E akjK(tk, t,+Jy Y(ti+,)), 

where y and 1 are integers such that i + y > 0 and i + y + 1 < k, and the 
akj 

are 
some appropriate quadrature weights. The weights akj and the integers y and / will, 
in general, depend upon i and k. Thus (2.2) can be approximated by 

k-I L?+/ 

(2.3) Yk + E E akJKk,+J 
= gk 

i=0 J=[ 
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where 

Yk y y(tk), Kki+j = K(tk, ti+j, Yi+j) and gk = g(tk). 

The formula (2.3) is implicit if i + y + 1 = k for some i and explicit otherwise. 
When the formula is implicit it can be used as a corrector 

k-1 

= gk - k a/iKi a kk kk' 
i=O 

where KPk = K(tk, tk, YI). Here aki denotes the coefficients of the corrector ob- 
tained by simplifying (2.3). 

3. The Family of Methods. The aim of this section is to derive two specific families 
of quadrature formulae to approximate 

k-I 

'kf(s() ds = E 
Jt+1 

f(s) ds. 
i=O I, 

We shall approximate f(s) for s E [ti, ti + j by interpolation using either 
(i) the 'forward' points { ti, ti+ ,...,ti+j1}, or 
(ii) the 'backward' points { ti+ 1, ti,. . ., ti+ 1 -j 

In the first case we obtain 

(3.1) f"1+ f(s) ds wjf [ti, ti+1, ..,ti+1], 1 e {1, 2,. 10}, 
j=O 

where 

f [ti ti+ 1, ti+j 
_ I [ti, ti+,... ,ti+11] -f [t+?1, ti+2,. ..,t+j] 

(3.2) i', t+' 
' 

* - (t-i+j) 

f Iti] f f(ti), 

and 

{hi+ 1 h j = 0, 

Wii = Jt,+ H (s 
_ 

ti+n) ds, j 
>? 1. 

t, 1=0 

The coefficients wij,j > 1, can be expressed recursively: 

Wio = hi+1 l,Wij = hi+ lC,ij_ l j >, 1, 

where 

C/qo = hi+1/(q + 1)!, 

(3.3) 
=j - h 

C" ~- qhj+ j ,+C/1, j? 

( i,n=1 ) 

In the second case, we obtain 

(3.4) t|+ f(s) ds = 
Ewi-Jf ti+ 1,ti -ti+ 1 ; I 1 c{-1,21 ..10}, 

j=O 

wheref[ti+,1 t i, . ,t,1 ] is defined by (3.2) with i and i + j replaced by i + 1 and 
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+ 1 - j, respectively. Similarly, we find that 

* = h,+1 w,* = -h ?1CI,C1 j > 1, 

and 

*q= (1) q h, +I(q + 1)!, 

(3.5) = + E I 1. ij -h1+1 i hl+2-)C1f!i1 

The recursions (3.3) and (3.5) permit efficient generation of the coefficients of the 
forward and backward implicit formulae, respectively. A proof of these relations can 
be found in Williams [14]. 

Now since we do not wish to employ the points t_11 t_21 . .. we shall approximate 

k-1 

tAf(s) ds = E ft'+'ff(s) ds 
0 i=O I, 

by the forward rule up to some point, say ti, and thereafter by the backward rule. 
Here the choice of v will be made on numerical stability considerations (see Section 
4). Thus, we shall write 

V / 

(3.6) 14 f(s) ds E E w,yf [t,, tl,+,...,tl+j] 
0 ,=0 j=0 

k-1 / 

I=v?1 j=O 

For notational simplicity we write 1 rather than li; in general 1 will be different at 
different step numbers. 

Examples. I. In the case / = 1 (for all i) (3.5) reduces to the composite trapezoidal 
rule. 

II. If 1 = 2 (for all i) and hi = h for all i, then the following quadrature method 
results: 

Jt f(S) ds =h E {f(t,) - 
W(f(t,) -f(t,?,)) 

O ,=0 

12- (fE (tl) - 2f (t,1) + f(ti+2))} 

k-1 

+ E {E(t+l) - 21() t+) +Et,)) 

- 1'2(fv (t, + ) - 2f (t,) + f (t, _ )) 

= 12 fO + 13 f2+ *+ fp -2f-2+12fp-1+12fv 

+p fv+I+?2+ + fk-2 +12fk-1 + 12fk} 

where f,, = 1(t,j), n = 0,1,... , k. A predictor is obtained through the Euler method 
k-1 

(3.7) Yk + E h,?lKk[t,] gk 
i=0 
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and the corrector can be obtained from the quadrature formula (3.6) 

v I 

Yk + E WiJKk[ti, ti+1... ti+j] 
i=O j=o 

k- 21 

(3.8) + E E w,yKk It1+D, ti, .. ,ti+l-X 
i=v+1 j=O 

+ E w lK1-1[t0 tk-D .. tk-i] = gk 1 E {1, 2,. . ,0}, 
j=0 

where 

Kk[til = K(tk, ti, Yi) 

Kk [til ti+1 ' -,**ti+j] Kk [ti, ti+l,K - - ti+j; Yi, Yi+l, ,Yi+;] 

Kk[til ti+l-* 
. 

,ti+j-1] -Kk[ti+l, ti+2,-.**ti+j] 

(ti -ti+j) 

and 

KI1[tk tk-- ..tk-j= Kk[tk, tk-l- -tk-j;Ykl Yk-1l-...Yk-j]I 

where yi denotes yi', that is, the approximation obtained after m (s< 10) corrections 
at a previous time step. 

These methods are used in a predictor-corrector mode which closely parallels the 
method of Shampine and Gordon [9] for ordinary differential equations. In each 
case the next correction is obtained by updating the previous formula with the next 
highest divided difference, the appropriate coefficients being calculated from the 
recursion formulae (3.3) and (3.5). 

4. Application of the Methods to Integral Equations. We can solve a second kind 
integral equation by first obtaining a prediction of the solution using the explicit 
Euler method, and then obtaining a series of corrections using the methods derived 
in Section 3. It can be proved (see Williams, [14]) that if hi = h for all i, then the 
methods will be convergent to O(h +1) as h -- 0, where m (a fixed positive integer 
in this case) denotes the number of corrections employed, each correction using the 
corrector with one more term than the previous corrector. However to use m 
corrections we require m starting values, also convergent of order m + 1. 

In practice we aim to use only the naturally occurring starting value y(to) = g(to) 
and to generate values Yi = y(ti), i = 1, 2,. .. , N, such that the required range is 
covered and Li'y - y(ti)I is less than some specified tolerance. In order to do this we 
control the error by changing the step size and order of the method so that some 
error estimate is kept suitably small. 

In allowing the step size to vary we may obtain accurate solutions with small step 
sizes and low-order methods when we have few values of yi, but larger step sizes and 
higher-order methods can be employed when we have more values. We therefore 
seek some error estimate which will ensure that the approximations to the solution 
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are for the most part within the required tolerance without the use of unreasonably 
small step sizes or high-order methods. 

Asymptotic error bounds for the global error can be calculated but these are of 
little value as they are usually so pessimistic, often by several orders of magnitude, 
that they force the use of unrealistically small step size and unnecessarily high order 
of method. We therefore seek some other means of error control which depends on 
the local truncation error, but also takes account of characteristics of the problem 
which may lead to instability or inaccuracy for other reasons. 

First we consider el, an approximation to the local truncation error involved in 
using the formula (3.1) or (3.4) to calculate 

t'+ 
K(t,, s, y(s)) ds. 

Thus (Henrici [4, p. 248]), 

(4.1) e ( WlIKk[lt t1+1, ... .t1+1] 
*,Kk[,l t,,--t,-] 

as appropriate. Further, if we define E' to be the local truncation error of (3.6) after 
/ corrections, we have 

v k-I 

(4.2) U L W1IKk[t, t1+1,. ,t1+1] + L WlKKk[tl?l, t,, .t. 

,=0 i=v+1 

It has been found from extensive computational experiments that the following is a 
reasonable estimate of the error after 1 corrections at step k: 

h1E U(1 + h(ICII + IC21)), 

where h is the largest step size used so far and where 

{K(tk IO, YI) - K(tk, O, Y2) 

Ci = YI - Y2 , I1 
=f Y2, 

0 O, otherwise, 

(K(tk, tk, Yk) 
- 

K(tk, tk, Yk-1) 

C2 = Yk 
- 

Yk-1 Yk Y 

'\O, otherwise. 

We do not attempt to justify the validity of this test theoretically. However, it 
involves very little extra computation since the divided differences and the quadra- 
ture weights w, and w1l have already been calculated. 

The stability of numerical methods for the solution of integral equations is still 
really an open problem (however, see Lubich [7]). Just as obtaining a realistic error 
estimate is considerably more difficult for integral equations than it is for ordinary 
differential equations, so is the analysis of numerical stability. It was Mayers [8] (but 
see also Baker and Keech [2]) who originally suggested the simple test equation 

y(t) + X ty(s) ds = g(t) 
0 
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through analogy with ordinary differential equations. Although this can give some 
indication as to the stability of the method applied to certain integral equations, it 
can often be wide of the mark for the same method used to solve other integral 
equations. Other papers (e.g. Van der Houwen and Wolkenfelt [12] and Jones and 
McKee [6]) have suggested other more sophisticated test equations but it is probably 
fair to say that none have been completely satisfactory. Also, even if one did obtain 
the "true" region of stability, any algorithm which included a test for stability at 
every step (and possibly every correction) would be very time-consuming. The 
alternative approach used here is to examine an estimate of the local truncation error 
at each correction. This estimate EJ is obtained easily as shown earlier, (4.2). If E+ ' 

is greater than El this is taken as a sign of instability and no further correction is 
made. 

The numerical stability of composite schemes obtained by using different values 
of v and a fixed step size h is compared using the test equation 

y(t) + f (Xo + X,(t - s))y(s) ds = g(t). 

The largest stability regions occur when v is as small as possible (see Williams [14]). 
Thus v is chosen to be 

min k + 1 9} 

where k is the step number and 9 is the number of back points needed in the case of 
the order 10 corrector. The user must supply the tolerance, denoted by TOL, within 
which he requires the solution. Additionally, he may supply the range of mesh 
spacing and starting value for step size. However, if he does not, the step size range 
is taken to be [10-, 10-'], and the initial step size to be 10 x h min. It is necessary to 
scale the user supplied tolerance in cases when the solution is increasing. We 
therefore use 

TOL = TOL * (tk - tot)/(t - to) 

whenever Yk -1 > Yk- 2. This forces the solution to be more accurate at the beginning 
of the interval whenever we have an increasing solution. 

We note that if Ie'l < TOL/k, then 

k-I 

|E'| < E |el < TOL. 
. =o 

The approach is therefore to correct each component of the integral for up to 10 
corrections, until either 

(i) lell < TOL/k for all i and some I such that le'l-' > TOL/k for at least one i. 
(Indeed, if Jell < TOL/k, then no further corrections are made to the ap- 
proximation of 1 K(tk, s, y(s)) ds.) 

or 
(ii) a stability limit is reached (i.e., jEJl > jE'-j'). 

Suppose that the correction procedure is stopped after q corrections. Then the 
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estimate is tested to check that 

(4.3) h|E,q(1 + h(|C1| + |C|)) < TOL. 

If this condition is satisfied, then the method proceeds to the next step with hk+l 

equal to hk unless q is less than half the allowable order for that step, in which case 

h,+1 is chosen to be 2 hk provided this does not exceed the largest allowable step 
size. If 

h E,q(1 + +C21)) > TOL 

then hk is reduced to hk/2 and this step is repeated. 
If the minimum allowable step is reached and (4.3) is not satisfied, then the 

tolerance is increased by multiplying by a factor of 5; the user is of course informed 
of this in his output. 

For a smooth continuous solution, one would expect a good approximation to the 
solution using a fixed step size and constant order method assuming that these are 
both suitably chosen. Since the algorithm starts by means of an order h2 method and 
small step sizes, one expects that once a suitable step size and order have been 
reached, then these will remain reasonably constant over the whole of the rest of the 
interval. However, if instability begins to take effect, then there may be a rapid 
decrease in step size. Thus a rapid decrease in step size will be permitted, but a rapid 
increase in order will be used to identify a possible discontinuity. An increase of 
order greater than four is considered sufficiently significant. If there has been this 
rapid increase in order from (tk-1' tk) to (tk, tk+l), then a discontinuity is suspected 
between tk-1 and tk+1. It is assumed to occur at tk (i.e., tD = tk) and the solution is 
recomputed on (tk-1P t0). As tD is approached, small step sizes and lower-order 
methods are used; these, in effect, assume less continuity in the underlying func- 
tion. Having reached tD, a restart is made incorporating an approximation to 

Jt tD K(tk, s, y(s)) ds into g(tk). Of course, it is then necessary to redetermine v. On 
the whole, this procedure works well, although occasionally a discontinuity is 
identified when it is in fact a rapidly changing continuous solution. 

A flow chart (see Figure 1) illustrates the calculation of a typical value Yk. We 
assume we start with a step size hk from the previous step, and TOL the tolerance 
(scaled if necessary). We first make the k kernel evaluations K(tk, tJ, y,) for 
j = 0, 1, . . , k-1. From these we calculate the prediction, y,P, and then K(tk, tk, YkP)- 

The first correction is automatically made using the first-order divided-differences 
which will overwrite the kernel values. We then enter the correction loop, correcting 
each component integral until one of the exit criteria is met. Note that after each 
correction the whole of the approximation to ft71 K(tk, s, y(s)) ds is recalculated 
using the latest value of Yk. After exit from the correction loop we either set up the 
values for the next step or repeat this step depending on whether (4.3) is satisfied. 

For clarity, only the essentials in the flow chart have been included. Both the 
scaled tolerance and code's ability to change the tolerance should the minimum 
allowable step size be reached have been omitted. 

This section has been concerned with an outline description of stability, error and 
discontinuity control. More details including suggestions for fine tuning can be 
found in Williams [14]. The documented package written in ANSI (1966) FOR- 
TRAN can be found in Williams [14] or Jones [5]. 
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FLOWCHART 

|go to begin| 
Begin: hh:= hh -I 

1:=1~ ~ ~ ~ ~ ~~~~h: hA1 

Evaluate K(t,, t,I) j 0(1)k -I y_ 4 

LCompute.t 
A 

Has the statbility \ /: 
< limit been reached i.e. Ne le < TOLk9 

gtobegin | Y 

/ s I > mi + 4 \Discontinuity has 
/ n( is number of corrections been detected. 

made at the previous step) Take necessary 
/ ~~~~~~~~~action 

<'~~~~~~~ + 

FIGURE 1 
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5. Numerical Results. A package using these methods applied as described in 
Sections 4 and 5 has been written, see Jones [5]. This package was tested using a 
number of different test equations obtained primarily from te Riele [13]. These 
results are presented here in a condensed form. 

Test Examples. 

1.y(t) + f Y (s) ds = (1 + (1 + t) e - 10t)1/2 

I 
+ t (10 log(1 + t) + 1-e - ) 

Solution: y(t) = (1 ?(I + t)e-1ot) /2, t e [0,5] 

2. y(t) + fty3(S) ds = (sin t + e-t)1/3 + 2 - cost - e -t 

Solution: y(t) = (sin t + et)'/3, t e [0, r] 

3. y(t) + t(3 + 2(t - s))y(s) ds = 2t + 3 

Solution: y(t) = 4e-2t- e-t, t e [0,5] 

4. y(t) _ , t 
(t _ S)2e-(t-s)y(s) ds = It2e-t 

Solution: y(t) = - e 3/2t(cos ?, j t + r sin 32 t)), t e [0,5] 

5. y(t) + ftcos(t - s)y(s) ds = t + 1 - cost 
0 

Solution: y(t) = t, t e [0, 5] 

6. y(t) - tt2e-sty(s) ds = t - 1 +(1 + t2)e-t2 

Solution: y(t) = t, t e [0,5] 

7. y(t) + f tsy (s) ds = et2 + t(et2/2-i) 

Solution: y(t) = et, t e [0,5] 

8. y(t) - f 

(t - s)y(s) ds = sin t 
0 

Solution: y(t) = {(sint + sinht), t e [0,5] 

9. y(t) - 2 tcos(t - s)y(s) ds = et 
0 

Solution: y(t) = et(1 + t)2, t e [0,5] 

10. y(t) - fy(s) ds = cost 
0 

Solution: y(t) = 2 (et + sin t + cos t), t e [0, 5] 

11. y(t) + f cosh(t - s)y(s) ds = sinh t 
0 

Solution: y(t) = k sinh( 2 t)e-t/2, t e [0,5] 
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12. y(t) + f max{s, y(s)} ds = 0 
0 

Solution: y(t) = J 2t t e [0, 2] 

13. y(t) + ty(s) ds 
I (1 + t2) + t, t e(1, 5] 

Solution: y(t) = t e [0, 1] 
14 y( t )[1,5] 

Solui y (t ) (0, t e 1,1] 

15. y(t) + fteY) *)ds -f (te + 1, t e [0,1] 
o?-1, ) t(0 t 1, 

Solution: y(t) = ~ t e [O,i] 

The results of solving these equations using the package described in this paper are 
summarized in Table 1. More detailed results including 5 more test equations can be 
found in Williams [14]. These results were obtained using the Oxford University ICL 
2900 computer. 

TABLE 1 
T 

Problem Step size -Number Maximum Tolerance Tolerance IMaximum 
number range of number of at at end errorI 

steps corrections beginning 

1 lo-, 10-1 94 9 lo-, 10-, 2.0 x 10-7 
2 10-, 10-1 73 7 lo-, 2.5 x 10-4 3.8 x 10-5 
2 10-5 5 x 10-2 86 6 10- 10- 1.9 x 10-6 
3 10-, 101- 182 9 10- l0o- 4.4x 10-7 
4* lo-, 10-, 112 7 10-, 10-, 2.5x 10-x 
5 l0o- i-T 120 6 10-, 10-, 1.3 x 10-6 
6* lo-, 10-1 76 9 10-, 1.25 x 10-3 1.8 x 10-3 

6 10-5 5 x 10-2 131 7 10- 2.5 x 10-4 8.7x 10-x 
7* io-5 101- 145 10 10-5 10-5 6.9x 10-3 
8* 10-5 10'- 393 5 10-4 10-4 2.2x 10-4 
9* 10-5 10-1 141 10 10-5 10-5 1.4x 10-4 
10 10-5 10-1 71 8 10-5 10-5 3.5 x 10-7 
11 10-5 10-1 104 10 10-5 6.25 x 10-3 1.2x 10-3 
11 10-5 10-1 91 8 10-4 1.25 x 10-2 2.0x 10-3 
12 10-5 10-1 144 7 10-5 i0-5 9.8 x 10-6 
13 10-5 10-1 98 5 10-5 10-5 6.7 x 10-6 
13 10-5 10-1 93 9 10-6 10-6 2.0x 10-7 
14* i0-5 10-1 246 8 10-5 10-5 1.3 x 10-5 

15* 10-5 10-1 89 8 10-5 10-5 4.2 x 10-5 
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Except for those test equations marked by * the maximum error was always less 
than the tolerance, although rarely less by more than an order of magnitude and 
often considerably closer. In problem 4 and 6 there was only one step where 
lerrorl > TOL. In problem 7, 53 steps had lerrorl > TOL and for all those steps 
y(t) > 1.7 x 10+6. In problem 8 there were 23 steps with lerrorl > TOL and for all 
these y(t) > 15. In problem 9 there were 36 steps with lerrorl > TOL in which case 
y(t) > 380. In problems 14 and 15 all the steps with lerrorl > TOL were near the 
discontinuities. 

A detailed history of problem 12 is give for tolerances of 10-4, 10-5 and 10-6. 
Problem 12. 

y(t) + 
t 
max(s, y(s)) ds = 0 

0 

y() J2/2, for t e [0, 2] 
( 2e t 2, for t e [2, 5] 

K(t, t, y) > 0, for all t. 

TOLERANCE= 10-4 

HMIN 10-4 HMAX = 10- 

solution step size order lerrori 

0.539 0.1453 0.1 4 5.0 x 10-7 

1.039 0.5397 0.1 4 5.0 x 10-7 

1.539 1.1843 0.1 4 5.0 x 10-7 

2.009 2.0181 0.01 4 9.6 x 10-6 
2.541 3.4362 0.1 6 6.8 x 10-6 
3.041 5.6655 0.1 7 1.2 x 10-5 
3.541 9.3407 0.1 8 2.0 x 10-5 
4.041 15.4004 0.1 8 3.4 x 10-5 
4.541 25.3909 0.1 8 6.7 x 10-5 
5.0 40.1711 0.059 8 1.1 x 10-4 

TOLERANCE= 10-5 

HMIN = 10- 5 HMAX = 10-1 

t | solution step size order lerrori 

0.5035 0.1268 0.1 4 2.0 x 10-" 
1.0035 0.5035 0.1 4 3.5 x 10-8 
1.5035 1.1303 0.1 4 4.5 x 10-8 
2.0010 2.0020 0.0025 4 5.2 x 10-7 
2.4950 3.2810 0.0410 6 7.8 X 10-7 

2.9865 5.3638 0.0410 6 1.3 X 10-6 
3.5190 9.1353 0.0410 6 2.2 X 10-6 
4.0105 14.9344 0.0410 6 3.6 x 10-6 
4.5020 24.4148 0.0410 7 5.9 x 10-6 
5.000 40.1711 0.0410 7 9.8 x 10-6 
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TOLERANCE= 10-6 

HMIN = 10-5 HMAX = 10l- 

t solution step size order lerrorj 

0.5035 0.1268 0.1 4 5.0 X 10-9 

1.0035 0.5035 0.1 4 5.0 X 10-9 
1.5035 1.1303 0.1 4 5.0 X 10-9 

2.0010 2.0020 0.0025 4 5.3 x 10-7 

2.4950 3.2810 0.0205 10 6.8 X 10-7 

3.0070 5.4748 0.0205 10 1.1 x 10-6 
3.4985 8.9501 0.0205 10 1.8 X 10-6 
3.9900 14.6317 0.0205 10 3.1 X 10-6 
4.5020 24.4148 0.0205 10 5.0 x 10-6 
5.000 40.1711 0.0064 10 8.2 X 10-6 

TOL largest no. points 

lerrorI lerrorI > TOL 

0-4 1.1 X 10-6 2/92 
10-5 9.8 x 10-6 0/144 
10-6 8.2 x 10-6 103/212 

N. B. For the last set of results the maximum order (10th) method had been used for 
132/212 of the steps-this would be unlikely for a well-behaved problem-the 
calculations were therefore repeated with a lower range of step sizes: 

HMIN = 10-6 and HMAX = 0.5 x 10-1 
The two sets of solutions agree to 5 decimal places. 

TOLERANCE= 10-6 

HMIN - 10-6 HMAX = 0.5 x 10-1 

t solution step size order lerrori 

0.4820 0.1162 0.05 4 3 x 10-'? 
1.0320 0.5325 0.05 4 1 x 10-IO 
1.5329 1.1736 0.05 4 1 x 10-10 
2.0008 2.0016 0.0025 4 9.9 x l0o- 
2.4935 3.2792 0.0328 8 1.3 X 10-7 

2.9851 5.3560 0.0328 8 2.2 x 10-7 

3.5094 9.0476 0.0328 8 3.6 x 10-7 

4.0009 14.7911 0.0328 8 6.0 x 10-7 

4.4924 24.1894 0.0328 8 9.8 x 10-7 

5.0000 40.1711 0.0161 8 1.6 x 10-6 

largest error = 1.6 x 10-6 

number of points = 15/185. 

ERRORI > TOL 

6. Concluding Remarks. This paper has been concerned with the derivation of 
variable step size predictor-corrector schemes for nonlinear second kind integral 
equations. Many of the ideas follow Shampine and Gordon [9] for ordinary 
differential equations. For instance, recurrence relations are devised for the efficient 
calculation of the quadrature weights. The implementation of these methods has 
been discussed. In particular, it has been pointed out how both stability and error 
are controlled. The code also takes special measures whenever there appears to be a 
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discontinuity in the solution or its derivatives. Other features include an automatic 
means of relaxing the user supplied tolerance if either this will not be attained or will 
take prohibitively long to attain. A package incorporating these methods has been 
tested using fifteen diverse problems and a summary of the results has been 
included. The main aim was to achieve reliability in the sense that if the results are 
not as accurate as requested, then an indication to this effect will be given and less 
accurate results will be obtained, and with few exceptions, this has been achieved. 
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